INTRODUCTION TO VOLCANOES AND VOLCANIC HAZARD ASSESSMENT IN METEOR

https://meteor-project.org
Outline

• Introduction to Volcanoes
 - Types of volcano
 - Style and Size of eruptions
 - Volcanic Hazards: PDCs, Tephra, Lahar
 - Volcanic Hazard Management

• Modelling volcanic hazards – METEOR
 - Volcanic hazards in Tanzania
 - Tephra2 Simulations
 - Lahar and PDC basin modelling
Introduction to volcanoes

• 10% of the world’s population live within 100 km of a volcano active in the last 10,000 years
• The explosive potential of a volcano is linked to magma viscosity and gas content.
• Low viscosity magmas have effusive eruptions
• High viscosity magmas tend to have more explosive eruptions.
Types of Volcanoes

Broadly 2 types of volcanoes:

Shield Volcano: Low viscosity lavas, forming gentle slopes. Hawaiian type volcanoes

Stratovolcano: Higher viscosity lavas, forming steep slopes as lavas build up around the vent of the volcano. More likely to produce explosive eruptions due to gas build up.

Other: Fissure, Cinder cones, Domes, Caldera

Caldera’s are formed in very large, highly explosive eruptions.

Image Source: BGS, UKRI
Styles of eruption

- Vulcanian: Small to moderate eruptions. Can generate ash columns up to 20km high.

- Plinian eruptions: Form large ash columns (20-35km tall), which may collapse.
The size of eruptions

Volcanic Explosivity Index

• 0 – 8 Scale
• Logarithmic.
• Assess: eruption volume, plume height, frequency, tropospheric and stratospheric injection.

• Hawaiian = VEI 0 - 1
• Plinian = VEI 5 - 6

Image credit: USGS
Volcanic Hazards

There are 2 kinds of volcanic hazard: **Primary and Secondary**.

- Primary hazards are produced during eruption by the volcano.
- Secondary hazards occur as a result of the primary hazard.
- Both can affect populations at distances of less than a kilometer (volcanic bombs) from the volcano up to several 100 kilometers away (ash fall / tsunami).

Image credit: USGS ‘Geologic hazards at volcanoes’ poster.
Volcanic Hazards

Primary Hazards
- Lava Flows
- Pyroclastic Flows (Pyroclastic density currents)
- Ash (Tephra) Fall
- Bombs and ejecta
- Landslides (Debris Avalanches)

Secondary Hazards
- Lahars / mudflows
- Floods
- Fires
- Tsunamis

Image credit: USGS ‘Geologic hazards at volcanoes’ poster.
Pyroclastic Density Currents

- Flow of fast-moving currents of hot gas and rock
- Travel at speeds higher than 80 km per hour
- Typically reach temperatures between 200 and 700 degrees.
- They are caused by:
 - Eruption column collapse
 - Lava dome Collapse
 - ‘Boiling over’ from an eruptive vent

Photo Credit: CVGHM eruption of Sinabung

https://meteor-project.org
Tephra / ash hazards

All pieces or fragments of rock ejected into the air by an erupting volcano.

• >64mm = bombs, <2mm = ash
• Can be transported far from the summit of the volcano.
• Travel depends on: height of the column, temperature of the air, wind direction and wind speed.
• Can damage buildings (collapse roofs), impact health, interact with airplanes.
Lahars

• May be formed by:
 o eruption onto snow or ice field
 o breaching of a crater lake
 o precipitation onto unconsolidated ash & PDC deposits
• Can increase by 10x the original size.
• Velocities 10s km/h, Travel for 10s km
• Deposits may be metres to 10s m thick
• Hazard may continue for years

Images from: Eruption of Mount Pinatubo (Image credit: USGS)
Volcanic Hazard Management

Figure 1.2 Volcano hazard mitigation (Tilling, 1989, p.242)
MODELLING VOLCANIC HAZARDS - METEOR

https://meteor-project.org
Volcanic Hazards in Tanzania

6 volcanoes active in the Holocene – Ol Doinyo Lengai, Meru, Igwisi Hills, Ngozi, Kyejo, Rungwe

Main Hazards:

- Pyroclastic flows
- Ash fall
- Lahars

Inputs:
- Eruption history
- Volumes of deposits
- DEM (10 or 30m)
- Particle size distribution
- Plume height
- Wind speed / direction
- Duration of column

Fontijn et al (2010) JVGR

https://meteor-project.org
Volcanic Hazards in Tanzania

6 volcanoes active in the Holocene – Ol Doinyo Lengai, Meru, Igwisi Hills, Ngozi, Kyejo, Rungwe

Main Hazards:

- Pyroclastic flows
- Ash fall
- Lahars

Inputs:

- Eruption history
- Volumes of deposits
- DEM (10 or 30m)
- Particle size distribution
- Plume height
- Wind speed / direction
- Duration of column

Fontijn et al (2010) JVGR

https://meteor-project.org
Rungwe – Tephra 2 simulations

Tephra 2: advection diffusion model to calculate tephra accumulation given a pre-defined set of eruptive conditions.

- Eruptive parameters: volume and plume height defined by the VEI of eruption. Particle size distribution
- Particle parameters: Fall time threshold (of particles) defined by properties (density and diameter), lithic and pumice densities etc – from Fontijn et al.
- Atmospheric parameters – 10 year wind data from NOAA. Gives speed, height and 2 atmospheric levels

2 eruption types – based on eruption history and previous elicitation.

1. VEI 2: $>10^6 \text{m}^3 <10^7 \text{m}^3$ ejected volume. Plume height 1 – 5km
2. VEI 4: $>0.1 \text{km}^3 <1 \text{km}^3$ ejected volume. Plume height 10km

Grain size distributions described by Fontijn et al (2011) and 2012
Rungwe – Tephra 2 simulations: Results

<table>
<thead>
<tr>
<th></th>
<th>Apr - Nov</th>
<th>Dec - Mar</th>
<th>Apr - Nov</th>
<th>Dec - Mar</th>
<th>Apr - Nov</th>
<th>Dec - Mar</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEI 2</td>
<td>![Image](1 kg/m²)</td>
<td>![Image](10 kg/m²)</td>
<td>![Image](100 kg/m²)</td>
<td>![Image](1 kg/m²)</td>
<td>![Image](10 kg/m²)</td>
<td>![Image](100 kg/m²)</td>
</tr>
<tr>
<td>VEI 4</td>
<td>![Image](1 kg/m²)</td>
<td>![Image](10 kg/m²)</td>
<td>![Image](100 kg/m²)</td>
<td>![Image](1 kg/m²)</td>
<td>![Image](10 kg/m²)</td>
<td>![Image](100 kg/m²)</td>
</tr>
</tbody>
</table>

https://meteor-project.org
Rungwe – Tephra 2 simulations: Uncertainties

- Eruption history is not complete.
- Future source parameters and wind conditions are likely to vary.
- Tephra 2 makes an assumption that the input parameters are representative of the average conditions over the peak eruption duration and that most of the tephra is ejected in a short duration explosive event.
Lahar and Pyroclastic basin modelling

DTM Preparation
- Resample SRTM DTMs to 450m
- Create buffer zones around each volcano (3 km and 30 km for PDC hazard; 10 km and 100 km for lahar hazard)
- Clip raster to outer buffers (30 km and 100 km) – Extract by Mask

Pyroclastic
- Clip ‘final’ DTM to 30 km buffer
- Calculate flow direction on ‘final’ DTM
- Calculate basins from flow direction
- Select all basin polygons that intersect with the inner hazard buffer
- Dissolve/merge polygons to give one footprint of potential hazard zones.

Lahar
- Calculate ‘Slope’ (Spatial analyst > Surface) from clipped raster
- Reclassify into 0 and >0. Use Properties > Unique values to determine lowest value that is > 0 (e.g. 0.002) and use this as the threshold for reclassifying.
- Convert to integer type and pass integer grid through the majority filter.
- Remove lakes and identify sinks, remove if necessary.
- Multiply filled DTM (sinks removed) with lakes removed DTM to give final raster for basin analysis
Lahar and Pyroclastic basin modelling - results

https://maps.meteor-project.org/map/vol-basins-tza/#6/-4.903/32.293
References

