

INTRODUCTION TO VOLCANOES AND VOLCANIC HAZARD ASSESSMENT IN METEOR

https://meteor-project.org

Outline

- Introduction to Volcanoes
 - Types of volcano
 - Style and Size of eruptions
 - Volcanic Hazards: PDCs, Tephra, Lahar
 - Volcanic Hazard Management
- Modelling volcanic hazards METEOR
 - Volcanic hazards in Tanzania
 - Tephra2 Simulations
 - Lahar and PDC basin modelling

Introduction to volcanoes

- 10% of the world's population live within 100 km of a volcano active in the last 10,000 years
- The explosive potential of a volcano is linked to magma viscosity and gas content.
- Low viscosity magmas have effusive eruptions
- High viscosity magmas *tend* to have more explosive eruptions.

British

Geological

365

ProglamagendredlESIRUgridded/popullativeniidatl&GS.

https://meteor-project.org

Types of Volcanoes

Broadly 2 types of volcanoes:

Shield Volcano: Low viscosity lavas, forming gentle slopes. Hawaiian type volcanoes

Stratovolcano: Higher viscosity lavas, forming steep slopes as lavas build up around the vent of the volcano. More likely to produce explosive eruptions due to gas build up.

Other: Fissure, Cinder cones, Domes, Caldera

Caldera's are formed in very large, highly explosive eruptions.

Stratovolcano

BGS

Styles of eruption

- Hawaiian / Strombolian: Least violent – lava flows and fire fountains. Lava fragments.
- Vulcanian: Small to moderate eruptions. Can generate ash columns up to 20km high.
- Plinian eruptions: Form large ash columns (20 -35km tall), which may collapse.

BGS

British

Survey

Geological

Image credit: USGS

Image credit: USGS

Oxford Policy

Strombolian

Image credit: ESA Earth Online

Image credit: BGS

The size of eruptions

Volcanic Explosivity Index

- 0 8 Scale
- Logarithmic.
- Assess: eruption volume, plume height, frequency, tropospheric and stratospheric injection.

British

Survey

Geological

BGS

- Hawaiian = VEI 0 1
- Plinian = VEI 5 6

Oxford Policy

Manaaement

NSE⁻

Volcanic Hazards

There are 2 kinds of volcanic hazard: **Primary and Secondary**.

- Primary hazards are produced during eruption by the volcano.
- Secondary hazards occur as a result of the primary hazard.
- Both can affect populations at distances of less then a kilometer (volcanic bombs) from the volcano up to several 100 kilometers away (ash fall / tsunami).

British

Survey

BGS

Geological

Image credit: USGS ' Geologic hazards at volcanoes' poster.

https://meteor-project.org

Volcanic Hazards

Primary Hazards

- Lava Flows
- Pyroclastic Flows (Pyroclastic density currents)
- Ash (Tephra) Fall
- Bombs and ejecta
- Landslides (Debris Avalanches)

British

Survey

Geological

BGS

Secondary Hazards

- Lahars / mudflows
- Floods
- Fires
- Tsunamis

https://meteor-project.org

Image credit: USGS ' Geologic hazards at volcanoes' poster.

Pyroclastic Density Currents

- Flow of fast-moving currents of hot gas and rock
- Travel at speeds higher than 80 km per hour
- Typically reach temperatures between 200 and 700 degrees.
- They are caused by:
 - Eruption column collapse
 - Lava dome Collapse
 - 'Boiling over' from an eruptive vent

Tephra / ash hazards

All pieces or fragments of rock ejected into the air by an erupting volcano.

- >64mm = bombs, <2mm = ash
- Can be transported far from the summit of the volcano.
- Travel depends on: height of the column, temperature of the air, wind direction and wind speed.
- Can damage buildings (collapse roofs), impact health, interact with airplanes.

British Geological

BGS

Manaaement

Lahars

- May be formed by:
 - $_{\odot}$ eruption onto snow or ice field
 - $_{\odot}$ breaching of a crater lake
 - precipitation onto unconsolidated ash & PDC deposits
- Can increase by 10x the original size.
- Velocities 10s km/h, Travel for 10s km
- Deposits may be metres to 10s m thick
- Hazard may continue for years

Images from: Eruption of Mount Pinatubo (Image credit: USGS)

Volcanic Hazard Management

Figure 1.2 Volcano hazard mitigation (Tilling, 1989, p.242)

BGS

MODELLING VOLCANIC HAZARDS -METEOR

https://meteor-project.org

Volcanic Hazards in Tanzania

6 volcanoes active in the Holocence – Ol Doinyo Lengai, Meru, Igwisi Hills, Ngozi, Kyejo, Rungwe

Main Hazards:

Pyroclastic flows

Ash fall

•

•

Lahars

Inputs:

- Eruption history
- Volumes of deposits
- DEM (10 or 30m)
- Particle size distribution

Plume height

Wind speed / direction

Duration of column

Fontijn et al (2010) JVGR

Oxford Policy

Managemen

Volcanic Hazards in Tanzania

6 volcanoes active in the Holocence – Ol Doinyo Lengai, Meru, Igwisi Hills, Ngozi, Kyejo, Rungwe

Main Hazards:

Pyroclastic flows

Ash fall

Lahars

Inputs:

- DEM (10 or 30m)
- Particle size distribution

Plume height

Wind speed / direction

Duration of column

NSET

Fontijn et al (2010) JVGR

Oxford Policy

Management

Rungwe – Tephra 2 simulations

•

Tephra 2: advection diffusion model to calculate tephra accumulation given a pre-defined set of eruptive conditions.

of eruption. Particle size distribution

speed, height and 2 atmospheric levels

Grain size distributions described by Fontiin et al (2011) and 2012

https://meteor-project.org

from Fontjin et al.

2 eruption types – based on eruption history and previous elicitation.

VEI 2: $>10^6 \text{m}^3 < 10^7 \text{m}^3$ ejected volume. 1. Plume height 1 – 5km

Eruptive parameters: volume and plume height defined by the VEI

Particle parameters: Fall time threshold (of particles) defined by properties (density and diameter), lithic and pumice densities etc -

Atmospheric parameters – 10 year wind data from NOAA. Gives

VEI 4: >0.1km³ <1km³ ejected volume. Plume height 10km

Oxford Policy

Rungwe – Tephra 2 simulations: Results

Rungwe – Tephra 2 simulations: Uncertainties

- Eruption history is not complete.
- Future source parameters and wind conditions are likely to vary
- Tephra 2 makes an assumption that the input parameters are representative of the average conditions over the peak eruption duration and that most of the tephra is ejected in a short duration explosive event.

Lahar and Pyroclastic basin modelling

DTM Preparation	Resample SRTM DTMs to 450m	Create buffer zones around each volcano (3 km and 30 km for PDC hazard; 10 km and 100 km for lahar hazard)	Clip raster to outer buffers (30 km and 100 km) – Extract by Mask	
Pyroclastic	Clip 'final' DTM to C 30 km buffer dire	calculate flow ection on 'final' DTM Calculate from flow o	basins direction Select all basin polygons that intersect with the inner hazard buffer	Dissolve/merge polygons to give one footprint of potential hazard zones.
Lahar	Calculate 'Slope' (Spatial analyst > Surface) from clipped raster us th	classify into 0 ind >0. Use Properties > que values to ermine lowest ue that is > 0 g. 0.002) and this as the preshold for eclassifying.	to integer nd pass er grid gh the ty filter. Remove lakes and identify sinks, remove if necessary.	Multiply filled DTM (sinks removed) with lakes removed DTM to give final raster for basin analysis

Lahar and Pyroclastic basin modelling - results

https://maps.meteor-project.org/map/vol-basins-tza/#6/-4.903/32.293

References

- Bonadonna, C. and Houghton, B.F., 2005. Total grain-size distribution and volume of tephra-fall deposits. *Bulletin of Volcanology*, 67(5), pp.441-456.
- Fontijn, K., Delvaux, D., Ernst, G.G., Kervyn, M., Mbede, E. and Jacobs, P., 2010. Tectonic control over active volcanism at a range of scales: Case of the Rungwe Volcanic Province, SW Tanzania; and hazard implications. *Journal of African Earth Sciences*, *58*(5), pp.764-777.
- Fontijn, K., Ernst, G.G., Elburg, M.A., Williamson, D., Abdallah, E., Kwelwa, S., Mbede, E. and Jacobs, P., 2010. Holocene explosive eruptions in the Rungwe volcanic province, Tanzania. *Journal of volcanology and geothermal research*, *196*(1-2), pp.91-110.
- Fontijn, K., Ernst, G.G., Bonadonna, C., Elburg, M.A., Mbede, E. and Jacobs, P., 2011. The~ 4-ka Rungwe Pumice (south-western Tanzania): A wind-still Plinian eruption. *Bulletin of volcanology*, *73*(9), pp.1353-1368.
- Fontijn, K., Williamson, D., Mbede, E. and Ernst, G.G., 2012. The Rungwe volcanic province, Tanzania–a volcanological review. *Journal of African Earth Sciences*, *63*, pp.12-31.
- Jenkins, S.F., Wilson, T.M., Magill, C., Miller, V., Stewart, C., Blong, R., Marzocchi, W., Boulton, M., Bonadonna, C. and Costa, A., 2015. Volcanic ash fall hazard and risk. *Global volcanic hazards and risk*, pp.173-222.
- Newhall, C.G. and Self, S., 1982. The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. *Journal of Geophysical Research: Oceans*, 87(C2), pp.1231-1238.
- Simkin, T., Siebert, L. and Sigurdsson, H., 2000. Earth's volcanoes and eruptions: An overview. *Encyclopedia of volcanoes*, pp.249-262.

