Modelling Exposure Through Earth Observation Routines
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What is a flood model?

* A computer-based simulation of flood inundation
* More specifically, a simulation of large, low-amplitude, shallow water
waves:
* 1-1000 km in length
* <1 hour to 6 month duration
* Low slope 1-100cm km-1
* Gradually varying flow
* Floodplain waves spread in two dimensions (2D) with complex dynamics
* Major control on wetland biogeochemistry and carbon cycle
* Extremes are a major natural hazard
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From urban flooding...
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.to major continental rivers
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Some history...
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Classical model development

* Has relied on analytical solutions and - J_I_I_I_I_l |

laboratory data
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* Model parameters and problem
geometry are well known

* Validation data are either exact or
very accurate

* Simulations are never compute
power limited
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20 years ago modelling was felt to be well understood

* Numerical solutions of the 2D Shallow
Water or 3D RANS equations

* High computational cost

* Applied to single river reaches a few km
in length

* Limited field validation

* Models would improve with better
physics...
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In 2000 modelling needs were felt to be well understood

* Numerical solutions of the 2D Shallow
Water or 3D RANS equations

More resolution

High computational cost

Applied to single river reaches a few km
in length

Bigger domain

Limited field validation

More physics

Models would improve with better
physics...

. . &‘5.
NSET @ OxlordPolicy A8

METEOR

() British ©) K@ '
j ieal LH EN g s
https://meteor—prOJect.o@ g:rc:jg?.cal QE.M @ ,ma‘;’;m ‘gﬂ



Real world applications

* High resolution needed

* Always compute limited

* Models are data-hungry

* But the data has error, and was

often missing

* Large areas (whole cities, regions,
countries, continents) need to be

simulated
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Topography data - the key breakthrough

* Airborne laser altimetry (LIDAR)
* ~0.25-2 m spatial resolution
* ~5 cm vertical accuracy
* Survey rates of ~50kmz2 h-1

River Stour, Dorset (5 x 7 km, 3M data points)
UK Environment Agency
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Led to a search for benchmark field data sets

* Data available for the January 1995 floods
* High resolution topography from air
photogrammetry
— Measured inflow discharge at Borgharen
— Measured outflow discharge at Maaseik
— Measured stage and discharge at two
internal gauges: Elsloo and Grevenbricht

— 86 maximum water level observations
— Air photo-derived inundation extent

— Satellite SAR derived inundation extent
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Models vs benchmark data

* Application of multiple models led to
surprising conclusions:

A
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* Simple models did as well as complex

OneS, g|Ven data errors Predicted water depth (m)

. High : 8.80

Low : 0.01

* Increasing model resolution was a

better way to improve skill
|:| Air photo shoreline

Kilometers
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* Terrain data accuracy and resolution
more important than physics

* Floodplain inundation is, to first ordgr a " o ipor )
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A new paradigm: Occam’s Razor

* Quickly realized that a new modelling approach was
needed

Faster models, often with simple physics

High Performance Computing

Finer resolutions, over bigger areas

“Entia non sunt multiplicanda sine necessitate”

Stronger focus on the data

For prediction we should favour the simplest
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How do flood models work today?

/—\ British [F] - @/ g Oxford PO“CY $: %’
https://meteor—project.o@ g:rc\':g cal “EE GEM % ggﬂ _____ NSET o Management /(\d\m‘

METEOR



Building models: conservation laws

Conservation of Mass

Change in cell volume = Volume in — Volume out

Conservation of momentum: Newton’s 2 Law

Flow between cells = f(gravity, friction, area, water slope, time)
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New LISFLOOD-FP formulation

Continuity Equation
Continuity equation relating flow fluxes and change in cell depth
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Momentum Equation
Flow between two cells now calculated using:
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Representation of flow between cells in LISFLOOD-FP
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New equation speed up
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How do flood models work?
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What data do they need?

* Terrain model
* River network:

* river geometry can be simplified to rectangular channel in all
but the most precise local-scale models

* still need location, width and depth
* Flow and/or rainfall inputs
* More complexity can be added if needed/available:

* Flood defences, friction maps, soil types, flow structures,
coastal water levels, etc.
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Dynamic wave simulation (Carlisle, UK)

* 30 km2 domain
* 10m grid
* 2 hour event

* <5 min compute tim
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River Severn, UK.
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LiDAR digital elevation
model (DEM) at 3m
resolution.
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Airborne Synthetic Aperture
Radar classified at a spatial
resolution of 1m
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Model vs. Radar: 8 November 2000
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Are dynamic models necessary?
Can’t we just use GIS?
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Machine Learning inundation models - Woznicki et al (2019)

Elevation Soils
1.
- X 'Y ; v
Federal Emergency Management Agency Random forest classification Predicted 100-year floodplain
100-year floodplain availability using biophysical datasets

Woznicki et al. (2019). Development of a spatially complete floodplain map of the conterminous United States using random
forest. Science of The Total Environment, 647, 942-953. https://doi.org/10.1016/j.scitotenv.2018.07.353
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https://doi.org/10.1016/j.scitotenv.2018.07.353

Machine Learning inundation models - Woznlckl et al (2018)

Hit rate = ~80% (vs FEMA training data)

Pros

* Can emulate existing model output
* Speed

11370'0"W 1_12“45'0'M
/ h

Cons

* Inherits errors in the training data

¢ Can'’t predict different return periods

* Can’t simulate land use and climate
change

i.e. can only interpolate, not extrapolate

Service Layer Cre e: Esri, DigitalGlobe, GeoEye, Earthstar
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Flood spreading algorithms

* Non mass-conserving

* E.g. Height Above Nearest Drainage

(HAND) method
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Flood spreading algorithms

* Non mass-conserving
* E.g. Height Above Nearest Drainage
(HAND) method

* Mass conserving
* GIS routines to distribute known flood
volume from a starting point to lowest
connected cells
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Set status of the cell closest
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Calculate water depths for all pixels
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Flood spreading algorithms Input volume

from defence

K
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1
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* Mass conserving e
* GIS routines to distribute known flood @ -
volume from a starting point to lowest

* Non mass-conserving

* E.g. Height Above Nearest Drainage ®
(HAND) method

connected cells
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Can we replace dynamical models?

* Pure ML approaches
* Restricted spatially to where training
data exist
* Can’t predict new scenarios beyond
training data event scale (i.e. cannot
predict larger unobserved floods)

* Rapid Flood Spreading Algorithms

* Either non-mass conserving, or cannot
simulate transient behaviour

* Fail at reproducing many benchmark
test cases
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Conclusions

Many large scale river flows can be represented by simplified shallow water physics

Given finite computing resources, model skill is improved more by increasing

resolution than improving the physics

Highly resolved models now possible
* ~1 -2 m over whole major cities (where data permits)

* ~30 - 100 m over whole continents (using globally available data)

Fusing models, ground and space data is yielding new insights into surface water

dynamics
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Thank you for your interest

For further information please see
http://meteor-project.org
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